
The above analysis demonstrated the dynamics of ~(t) and made it possible to obtain its 
asymptotic value as well as the dependence of the latter on the parameters of the composite. 
When calculating temperature fields in layered (reinforced) media within the framework of the 
two-temperature approach one must assess the effect of the unsteady nature of = on the accu- 
racy of the calculation and take it into account, if necessary. A similar analysis should 
also be carried out for reinforced composites. 

NOTATION 

Here z and x denote the space variables; t is the time; Ti(x, z, t) and Ti(z, t) are 
the temperature of the i-th component and its average cross-sectional value; qij is the den- 
sity of the thermal flux from the i-th to the j-th component; ~ is the coefficient of heat 
transfer between components; Ci, kxi, and lzi are the coefficients of volumetric heat transfer 
and the radial and axial thermal conductivity, respectively; R T is the coefficient of contact 
thermal resistance between layers; s is the half-thickness of the layers; q0 is the thermal 
flux density of the laser radiation; tp is the length of the laser burst; p and n are the 
parameters of the Laplace and Fourier cosine transforms; and s is the characteristic size 
of microinhomogeneities. 
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PROBLEM OF HEAT AND MASS TRANSFER DURING SHORT-TIME 

PHASE CONTACT 

V. V. Migunov UDC 536-12 

The associated mixed boundary-value problem of multicomponent mutually related 
heat and mass transfer during short-time contact of two phases with arbitary 
dimensionalities of the transfer vector potentials in them through a boundary 
with selective penetrability during excitation of material flows in each of 
the phases, which are absent in the other phase, is formulated and solved. This 
is done with the purpose of generalizing the model of phase penetration and 
restoration in the theory of mass exchange, and of similar models in the the- 
ory of heat exchange, based on the phenomenon of short-time contact interaction. 
The validity limits of these models are estimated. An effect is observed of 
internal phase flows on the intensity of nonstationary interphase exchange. 

The contemporary intense development of material processing technology leads to an enhanced 
role of nonstationary mutually related exchange processes in comparison with the stationary 
decoupled ones. This fact is so far not sufficiently reflected in the solution of problems of 
heat and mass transfer (HMT) at small Fourier numbers, for short-time contact (SC) phases. The 
physical model concepts have been developed well for both heat- and mass-transfer, but sepa- 
rately. In the theory of mass exchange they are represented by permeation (Higby) and phase 
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restoration models, while in heat exchange calculations one uses the theory of fluidization, 
simplified models of gushing layers, and models of conductive drying. The corresponding 
mathematical problems have simple analytic solutions (see the review below of special solu- 
tions of problems (1)-(5)). It is useful to clarify whether this simplicity is conserved 
in more general statements of SC problems, when the mutual effects of HMT and the selective 
permeability of the surface contact are included. 

Consider the case of SC phases with possible selective permeability of surface contact. 
Different systems of equations (SE) of HMT with different dimensionality of the vector Z of 
transport potentials may be valid in the phases. At this phase we will not specify the mean- 
ing of the components of the vector Z and will not restrict its dimensionality, possibly 
larger than three [I]. The low penetration depth of the perturbation fields of the transport 
potentials in the SC models makes it possible to neglect the finite sizes of contacting phases 
(first and second) and the curvature of the contact surface. The distribution of transport 
potentials is assumed uniform in each phase up to contact. Far from the contact planes the 
transport potential fields are not perturbed. There exist no concentrated sources in the 
phases, and the distributed power is expressed in terms of derivatives of Z, as was done in 
studies of A. V. Lykov in the analysis of MHT in capillary-porous bodies. All parameters 
are assumed to be constant. According to these assumptions for each phase we have conserva- 
tion equations of transport substance in local form in the absence of convective transport 

C~ OZ~ = Li OZ-L, i = I ,  2, (1) 
Oz Oz 2 

initial conditions 

Zi(z, O)=Zio, Vz4=O, i = l ,  2, 
and conditions at infinite distance from the contact surface 

(2) 

Zi((--l)~o% ~)=Zi0, VT>0,  i =  1, 2, (3) 

where the elements C i are defined as ratios of stored amount of substance to the corresponding 
transport potential, and depend on the selected units of measuring Z i, as well as the elements 
Li, while the dimensionalities of the vectors Z i are equal to n i and do not generally coincide. 
For definiteness let n 2 ~ nl, i.e., the number of mutually transported substances in the 
second phase is larger than in the first phase, for example, thermal moisture transfer in a 
capillary-porous body (phase 2) in contact with a metallic hot body (phase i). 

Initially we consider for simplicity the case in which all components ZIeR I are repre- 
sented in Z2eR 2 -- we have the insertion RlcR 2. Obviously, the boundary z = 0 is impenetrable 
in this case for the n 2 -- n I components of Z 2 in R=\RI. We introduce the reduction operation 
of a vector or matrix from R 2 into R I (-) and the extension operation by zeros from R I into 
R 2 (=). The equilibrium condition at the boundary is then written in the form of a condition 

of the first kind 

Z2 (0, T)=KrZ1 (0, ~)ERI vT>0, (4) 

where K r is a diagonal matrix of n I x n I equilibrium constants. In particular, if the topic 
of discussion is multicomponent diffusion and heat propagation, the diagonal of K consists of 
Henry constants or coefficients of the linearized representation of equilibrium phase composi- 
tions [2] and unities, corresponding to equilibrium heat at certain phase temperatures in 
identical measurement units. Assuming absence of concentrated transport resistance at the 
phase separation boundary, we write the flow balance at the boundary in the form 

L~ OZ.(O, "~) L2 OZ.(O, ~) = 0 6 R ~ ,  V ~ > 0 ,  (5) 
Oz Oz 

being a condition of the second kind. Along with the matching conditions (4), (5), the 
boundary-value problem (1)-(5) must be solved in the regions z > 0 and z < 0 for T > 0. 
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The solution of the problem stated is known for n I = n 2 = 1 in the case of purely thermal 
contact. The solution is carried out in [3] by the method of integral transforms for the first 
boundary-value problem (i) in the half-space z > 0 for arbitrary n2, where one uses implicitly 
the positive property of the eigenvalues C-ZL. Transport effects in the first phase and selec- 
tive permeability were not considered in this case. The mixed boundary-value problem for (i) 
in the region z > 0 was solved in [4] for n 2 = 2 and in [5] for n 2 = 3, in which case the 
positivity of eigenvalues was proved in [4] under specific conditions of HMT in a capillary- 
porous body, and the selective permeability of the contact surface was accounted for. To 
simplify the calculations we assume in the following satisfaction of the positivity condition 
of eigenvalues for (i) and the presence of a basis of eigenvectors of C-IL. By definition 
the matrix T i of eigenvectors of the matrix Ci-iLi, corresponding to its n i eigenvalues and 
combined in the diagonal matrix 91' is such that 

2 TylC~ILiTi ,  i 1 2. (6)  

The basis of obtaining a simple solution in [4, 5] was the Boltzmann substitution [6]. 
For (i)-(5) it must be carried out in both regions: 

z 
[ ~ = ( - - 1 /  2zo, 5 , i = l ,  2. 

We also introduce K 2 = K v + I 2 - - I 1 ,  and carry out the replacement of variables: 

Z~ = K=Z:, C~ = C2K2, L~ = L~.I<~. (7) 

The eigenvalues of C2*-ZL2 * coincide with those of C2-IL2, and the eigenvectors form the 
matrix T2* = K2-1T2. We write down the problem (i)-(5) in the new variables, omitting the 
superscript * for the second phase. From (i) we have 

2~iZ~-'~CTILiz[= O~Ri, i =  1, 2, (8) 

where the prime denotes differentiation with respect to ~. Conditions (2) and (3) are com- 
bined into 

Z~ (oo) =Zi0, i= I, 2, 

the flow balance (5) transforms to the form 

(9) 

LxZ; (0) + L2Z~ (0) = 0 E R2, (lO) 

and the equilibrium condition (4) transforms to the continuity condition of the transport 
potentials during transition through the boundary 

ZI (O)--Z2 (0) = 06R1. (11) 

The variable replacement $i ~,s ' = , Z i = P transforms (8) to an autonomous system of n I + n 2 
first-order linear ordinary differential equations in Pi with checkered matrices, being the 
direct sum [7] of -LI-ICI and -L2-IC2. This makes it possible to indicate the structure of 
the required solutions in the form of a linear combination of supplementary error integrals 
erfc ($i/vi~), where ~ij is the square root of the j-th eigenvalue of Ci-iLi, as well as in 
[4, 5]. WeUseek a solution of (8)-(11) in the form 

Z~ (~i) = Z~o + T~ erfc (~71~i) A~, i = 1, 2, (12)  

where the operation erfc is applied to the diagonal elements of the matrix ~i~i element by 
element: 

Zi (~) = Z~o + A~I erfc (~i/v,:) ti: + . . .  + Ai,~ erfc ( ~ , I ~ )  t . ,  
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where the j-th eigenvector tij is the solution of SE CT~Ld~=vi/i j . It is easily seen that 
the system of equations (8) and conditions (9) are satisfied identically while the vectors 
AIeR I and A2~R 2 of integration constants are subject to conditions (I0) and (11). 

In analyzing "pure" heat transfer in a single phase it is useful to introduce the heat 
accomodation (thermal activity) coefficient [8] K = cp[%/c9]0, s, determining the phase acti- 
vity contribution to heat transfer, and unrelated to the time constant ~k (-with the hydro- 
dynamic environment). The heat transfer coefficient is in this case 2K/[~Tk ]~,s [8]. In 
mass exchange theory, according to the Higby models and the restored phases the mass transfer 
coefficient is represented in the form ~ = 2D~176 , where D is the diffusion coeffi- 
cient. The square root of the diffusion coefficient is a convenient parameter in calculat- 
ing diffusion in chemical kinetics [9], in solid alloys [i0], and in other cases. This 
quantity has not acquired any name in the literature, though well investigated and discussed 
is the power m = 81nS/alnD, equal to �89 according to Higby theorems and phase restoration, and i 
according to film theory. In the problem of multicomponent mutually related HMT with SC 
we introduce similar characteristic phase properties -- the potential accomodation matrices 

Ai  = C I T p ~ T Y  I = L i T f o y l T T  I, i = 1, 2, (13) 

and  form from them the contact matrix 

A ---- A 1 (A 1 + Ae) -~ A2 = .A_e (A 1 --{- -X~,) -1 A1, (14) 

determining the basic properties of SC of the given phases, and allowing one to write down a 
solution of problem (8)-(11) in the simplest form. 

We note that det A i > 0, where A is the vanishing operator on R2kRI, and, moreover, A = 
A, i.e., nonvanishing elements of A occur only in rows and columns corresponding to R I. For 
n= = nl, when it makes sense to formulate additivity rules of transport resistance [2], this 
rule is valid by the definition of (14): 

A- t  = A] -1 + A~ -1. 

When the minimum eigenvalue of one of the accomodation potential matrices A i is much larger 
than the maximum eigenvalue of another Aj, A § A i. This is similar to the equality between 
the mass transfer (heat transfer) coefficient an~ mass release (heat release) coefficient 
during resistance-limited transport by one of the phases. 

The potential accomodation matrices can be written in a form similar to the heat accomoda- 
tion coefficient: A i Ci[Ci-iLi]0 5 using the definition of the square root matrix [11] 

To search the vector constants A I and A 2 in the solution (12) we introduce the notation 
AZ = Ze0--Z10eR1, and write conditions (I0), (ii), with account of (12), (13), in the form 

AITaAI@A2T~A~=O 6 R2, 

TtAI=T2A2+AZ6RI. 

( 1 5 )  

(16) 

Substituting (16) into (15), we obtain 

A1T2A2 q-A~T~A2 = - -A1AZ 6 R2. (17) 

We note that vxER2 : 

A I / =  X~X = A1 [x "-t- (x - - 3 ) ]  = AlX, 

including both x = T2A 2 and x = A--Z. Consequently, (17) is equivalent to 

(X1--kA~)T~A~=--A1AZ 6 R~. 
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Multiplying on the left by (~: + A=)-:, this equality can be transformed to the form 

%A, = - ( ~ ,  + &}-: a-~a2 ~ R, (:8) 

or, with account of (14) and the nondegeneracy of Air 

As = --T~q A71AA'-Z C R=. ( : 9 )  

To search A: we substitute (18) into (16): 

r , A ,  = Az - (~, + &)-: X::-: ~ n,. 

We note here that for the whole matrix M over R 2 and for the whole vector xeR: 

M x  = Mx,  

and we carry out the transformations: 

T:A: = AZ - -  (~: q- As)-: X:AZ -- [I: - -  {~: + A=)-' ~ ]  AZ = 

= ( &  + A,)-:&AZ = A7 l& (K~ + &) &zxz. 

For any two matrices, M: over R: and M 2 over Ri, MIM2=M1M~, therefore 

T:A:  -- A:qAAZ ER:, 

whence 

A1 = T71AT'KAZ 6 R,. (20) 

Thus, the problem (8)-(11) has been solved. 

In the HMT problem under consideration there exists a confinement through the interphase 
boundary, which can be substantial in several eases, the enclosure R~R 2. This implies that 
in the first phase there is no transfer of materials which are not transferred into the second 
phase. Within the solution obtained by formally introducing into R 2 defect potentials which 
exist in the first phase, this defect should not be adjusted, since the separation boundary 
is impenetrable for the corresponding fluxes. An example could be thermal contact of a 
capillary-porous body through a thin metallic object with a heat carrier containing impurities. 
The corresponding general problem renders the calculations quite unwieldy, and it is not possi- 
ble to obtain a constructive solution of the system (15), (16). However, writing down a solu- 
tion by analogy has shown its validity by direct verification. We provide results of solving 
this more general problem of mutual HMT. 

Equations (I)-(3), (6)-(9)~ (12), (13) remain unchanged. The insertion RlcR2 is not 
assumed. The spaces Rl+ 2 = R:UR~, R1z = RiNR2 are introduced, and the operations of extend- 
ing a vector or a matrix into R~+2 by zeros (=) and reduction into R:2 (-), generalizing the 
operations introduced earlier. We put K 2 = K F + I2--I12 in (7). The flow balance condition 
(I0) becomes 

L:Z: (0) -F L~Z~ (0) = 0 E R:+~, 

and the same potential continuity condition (similar to (11)) acts only in R:2: 

(2:) 

Z l ( O  ) -- , (22) 
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The definition (14) is generalized as follows: 

h :-- A 1 (A 1 2 V 7~-~) -1 ~2 = A2 (A1 -~)-i~1- 

Here, as w~ll as in the previous problem, det A i > 0, where A is the vanishing operator 

over RI+2\R12 A=A . The solution of the problem (8), (9), (21), (22) in the form (12) has 
the coefficients 

A~ = T71 (~  q- 7=) -~ ~2AZ E R~, A= --- --TT' (~  qt_ ~)-~ 7~AZ 6 R2, 

where AZ = Z20--~z0. It is seen that the solution obtained above (19), (20) is a special 
case of the latter expressions. 

Quite important is the issue of validity limits of the SC model. Not dwelling on the 
validity limits of all remaining assumptions, we consider the basic problem whether the 
contact can be assumed to be short-time. Despite the wide range of applications of this 
model, the unique condition characterizing its validity remains the restriction formulated 
by O. Krischer [12] 

Fo = azlt-<0,106. (23) 

Here a is the temperature conductivity coefficient of a planar film of thickness s with initial 
temperature To, one of whose surfaces (z = 0) is subject to temperature T c 4 To during the time 
of contact. Condition (23) guarantees that the temperature variation at the other film surface 
(z = s does not exceed ITc-T01 by more than 3Z. The generalization of (23) to the correspond- 
ing case of multicomponent HMT in the film is the same condition, in which for a one must use 
the largest eigenvalue Imax of the matrix C-IL. Depending on the purpose of study, the level 
of allowed oscillations of the various Z components at the exterior boundary z = s can differ, 
therefore either attenuation or enhancement of condition (23) is possible or a combination 
of this type of conditions. In specific cases these estimates are carried out quite simply 
by using solutions of type (12). The same approach can be obviously extended to the case of 
contact of two films of finite thickness. 

However, the occurrence of these conditions, guaranteeing calculation accuracy of poten- 
tial fields in a film of finite sizes, has drawbacks. It is unrelated to the basic problem 
of the HMT calculation, the determination of exchange process intensities, and therefore 
is irrelevant to the calculation accuracy of material transfer fluxes. Besides, in real 
situations a restriction related to the curvature of the contact surface (granular surface, 
gas bubbles, cylindrical objects, etc.), but not to the finite size of the contacting bodies, 
can be active. Detailed analysis of the effect of finite size and curvature on the flow cal- 
culation accuracy was carried out in [13] for the case dim Z = i, when one of the phases has 
infinitely large capacity, while the second occupies a canonical region of space (the film 
interior of thickness 2s cylinder and sphere of radius s 

A substantial restriction can also be the presence of angles at the violating surface. 
To estimate the validity limits of the SC model in this case one can use the solution ob- 
tained in [14] of the first boundary-value problem for the thermal conduction equation inside 
an infinite wedge with opening angle O = T/k, where k = 3, 5, 7 .... , . Calculating the time- 
averaged thermal flux contact through two surfaces of length s treated asymptotically for 
k § ~ and subsequent approximations, provides the possibility of determining the required 
error. We use the solution [15] in estimating heat release from a cylinder of circular 
cross section and a sphere in the external region. 

In Fig. 1 we construct the calculated dependences of the ratio of the heat release co- 
efficient to its value calculated for a planar boundary half-space according to Krischer [12]. 

Turning to multicomponent transport, for a rough estimate one can also substitute ~max 
for a. In treating HMT in two contacting phases one requires more specific analysis, but 
here too Ima x plays a decisive role. 
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Fig. I. The ratio of the calculated heat release coeffi- 
cient to its value according to O. Krischer as a function 
of the Fourier number during heat release: i) in the inte- 
rior of an infinite film; 2) in the exterior of an infinite 
film; 3) in the interior of an infinite cylinder; 4) in the 
exterior of an infinite cylinder; 5) in the interior of a 
sphere; 6) in the exterior of a sphere; 7, 8, 9) in the 
interior of an infinite wedge with opening angle 150 ~ , 
120 ~ , and 90 ~ , respectively. 

To calculate the flows we note that in both solutions obtained 

2 
L Z; (0) = (0) - -  A A Z ,  

and, transforming from ~i to the original variables z and z, we find the vector J of instan- 
taneous flow densities from the first to the second phase 

i A<%0--%0) J ('0 = wdo, 

The flux surface density averaged over the contact time is 

(24) 

2 A(210- Z 0), (25) Ja~ (~) - [~1o,5  

which fully corresponds to most computational equations of heat transfer, mass transfer, and 
multicomponent mass transfer [2]. The product 

K = 2A ( 2 6 )  

can be called the transport potential matrix for mutually related HMT during SC of two phases. 
The decisive role of hydrodynamic contact conditions is reflected in K by the value of the 
contact time ~k, while the properties of contacting media are accounted for by the contact 
matrix A. We note that in stating and solving problems of the first kind in the region 
z > 0 the same expressions (24), (125) are valid for the flux densities, where A is replaced 
by the transport potential matrix A2, and Zl0 is the surface value of Z2 (in which case A I = 
0, A 2 = T2-z(Zz0--Z=0)). This solution can be obtained by using a matrix cell representation 
by the limiting transition corresponding to an unbounded increasing capacity or a conductivity 
of the first phase, when Zz(0) + Zl0. 

One more comment on the properties of the solutions obtained is appropriate. In most 
experimental studies of mass exchange the value of the power in the dependence of the mass 
release coefficient on the diffusion coefficient m is larger than �89 usually in the interval 
0.5-0.75 [16]. As a rule, values m > ~ are interpreted in favor of film theory, though, 
possibly, this is an argument in favor of HMT relevance. We illustrate this point on a simple 
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example, when the second phase limits transport, and the boundary is permeable only to one 
component, n~ = I, n~ = 2. Omitting for brevity the phase number (=2), putting C2-~L2 = A, 
and indexing the matrix elements by row and column numbers, we have 

A =  - -  
1 [L,~ q- v~2C n -- L~zLg~/(L2~ q- %'1'~2C22) 

v~ + .~ ~ 0 

According to (26) the density of scalar flow through the phase boundary is proportional to 
A11, while in the case of pure (unmixed) transport All is replaced by the product C11[C11 -I" 
L~1]~ 5. The quantity X, which may be termed the mutual transport coefficient, is: 

All --[I LI2L2~ 1 -}- 2s ] ~ 
X = [Ca1-~11]o,~ L n L ~  1 + s ' (27) 

where s = [det (A)]~ 

In systems for which the Onsager relations [3] are valid the matrix L is symmetric, 
LI2L2z > 0 and 0 < X < i. L is not always symmetric, nevertheless the property X < 1 can be 
assumed to be quite general, since, according to (27), only the signs of Lx2 and L2x are 
generally valid for it. We determine the power: 

01nAl~ 1 [1 + (1--z2)Au ] .  (28) 
m =  O l n A n  -- 2 -  [ (1-}-s)(1-l-2s)A22 

As is seen, m > ~ for LtzL21 > 0. Thus, despite the permeability of the separation boundary 
for one material only, its rate of transport depends on the fluxes of other materials, not 
intersecting the boundary. The Eckerman corrections to heat flux and to the similar correc- 
tion of mass flux through the film for simultaneous heat and mass transfer are well-known 
[16], but an effect on stationary transport is possible only during transition of additional 
materials from phase to phase. Under nonstationary conditions of SC phases Eqs. (27) and (28) 
demonstrate an effect of transport mutuality even in the absence of additional fluxes through 
the boundary. The additional fluxes reduce the intensity of the fundamental exchanges, though 

they are internal. 

The noncoincidence of eigenvalues of C-IL used above is not a major restriction - in 
the opposite case Z' can be sought in the form of a linear combination of the functions exp 
(--~2/v~), 22 exp (--~2/v~), ~4 exp (--~2/v~) ..., and not only exp (--$=/v~). 

When the association conditions are of more general form, more precisely, when equality 
(5,) is written with the replacement of kinetic coefficient matrices L I and L z by arbitrary 
matrices QI and Q2 of corresponding dimensionalities, the problem (1)-(5) has similar proper- 
ties. Introducing G i = QiLi -I, we observe that the new problem has the same form of solution 
(12) with the same T i, A i, but is coefficients A i are determined, instead of (19) and (20), 
by the equations 

A~ = - - T ~  I (G~A~) -1AGA--Z, AI = T~ I (G~A~) -1A~AZ, 

in which the new contact matrix is: 

Aa---- G~A~ (G~A~. + G~A2) -~ (3~At = G~A~ (~A~ --I- G~Az) -t G~A2. 

In that case the expressions for the flux densities and the transfer potentia I matrix (24)- 
(26) are retained, replacing A by A G. The case of absence of insertions RIcR = for the problem 
with matrices Qi involves in these three equations the same changes as in the problem with 

matrices L i . 
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Thus, application of short-time contact models, and the introduction of extension and 
reduction operations of vectors and matrices, make it possible to obtain a simple analytic 
solution of the quite general problem of multicomponent mutually related nonstationary HMT 
through a boundary with selective permeability. The method suggested of generalizing param- 
eters convenient for calculations, such as mass exchange, heat exchange, and heat accomoda- 
tion coefficients, retains the shape of the equations of interphase exchange in the case of 
more than one of its driving forces. 

The dependence was established of exchange fluxes between phases on the internal fluxes 
of other substances induced by them in the phases without intersecting the contact surface. 
The power values exceeding �89 in the dependence of the mass release coefficient on the diffu- 
sion coefficient, usually interpreted in favor of film theory, can be explained by the effect 
of internal fluxes in the phase. 

Numerical values were determined for the validity limits of the hypothesis of short- 
time contact by the Fourier criterion, starting from a calculation accuracy of interphase 
fluxes. 

The results obtained can be useful regarding experiments on nonstationary HMT, in 
analyzing exchange processes in industry, and in design problems. 

NOTATION 

Here T denotes the matrix of eigenvectors; Z is the transport potential vector; �9 is 
time in sec; z is the coordinate along the normal to the contact plane with a zero at the 
phase separation boundary; I. is an eigenvalue of the matrix; v is the matrix of square 3 
roots of eigenvalues; C is a diagonal matrix of capacity coefficients; L is a matrix of 
kinetic coefficients; R i is Euclidean space of dimension ni; I i is the unit matrix over Ri; 
Fo is the Fourier number; $ is a Boltzmann variable; Q is a matrix of boundary conditions of 
the second kind; c is the specific heat capacity; p is the density; X is the heat conduc- 
tivity; i is the phase number; and j denotes the eigenvalue number. 
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